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[01] Kovac A. et al. – Hydrogen in energy transition: A review – International Journal of Hydrogen Energy, v. 46, 10016-10035 (2021)
[02] Capurso T. et al. – Perspective of the role of hydrogen in the 21st century energy transition – Energy Conversion and Management, v. 251, 114898 (2022)

Introduction
Hydrogen as flagship of the Energy Transition
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Hydrogen
Storage solutions
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[03] [https://www.energy.gov/eere/fuelcells/hydrogen-storage (Accessed on 09.09.2024)
[04] Morandi R. and Groth K. M. – Hydrogen storage and delivery: Review of the state of the art technologies and risk and reliability analysis – International Journal of Hydrogen Energy, v. 44, 12254-12269 (2019)

High hydrogen density
Well-developed storage&distribution infrastructure
Relatively easy cracking
No CO2 emissions.

ADVANTAGES

x Process deeply limited by thermodynamics
x Toxicity of ammonia
x Trace of NH3 in the H2 after the decomposition

DISADVANTAGES
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https://www.energy.gov/eere/fuelcells/hydrogen-storage


Ammonia synthesis
Thermodynamic limits

𝑵𝑵𝟐𝟐 + 𝟑𝟑𝑯𝑯𝟐𝟐 ⇄ 𝟐𝟐𝑵𝑵𝑯𝑯𝟑𝟑
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The conversion of nitrogen and hydrogen in ammonia is deeply limited by thermodynamics at high T.

High yields are thermodynamically possible at low temperature, but heterogeneous catalysts are
inactive at ambient condition due to their own activation temperature.



Ammonia synthesis
Haber-Bosch Process
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[05] https://www.nobelprize.org/ [Accessed on 11.10.2024]
[06] Appl M. – Ullmann's Encyclopedia of Industrial Chemistry, Ammonia 2: Production Processes – Wiley-VCH (2011)

Ammonia is the second largest synthetic chemical product; more than 90 % of world consumption is
manufactured from nitrogen and hydrogen in a catalytic process originally developed by Fritz Haber
and Carl Bosch using a promoted iron-catalyst discovered by Alwin Mittasch.

An H2 – N2 mixture reacts over an iron-based catalyst at high temperatures in a range of 400 – 500
°C and pressures above 100 bar with recycle of the unconverted part of the reactants.

Fritz Haber
(1868 – 1934)

The Nobel Prize in Chemistry 1918 
was awarded to Fritz Haber 

"for the synthesis of ammonia 
from its elements“.

Carl Bosch
(1874 – 1940)

The Nobel Prize in Chemistry 1931 
was awarded to Carl Bosch 
"in recognition of the contributions 
to the invention and development of 
chemical high-pressure methods“.

https://www.nobelprize.org/


CATALYTIC REACTOR  
Reaction unit working at 

High temperature and high pressure.

Ammonia synthesis
Conventional system

Broken-out Section
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H2 + N2 + NH3

𝑵𝑵𝟐𝟐 + 𝟑𝟑𝑯𝑯𝟐𝟐 ⇄ 𝟐𝟐𝑵𝑵𝑯𝑯𝟑𝟑
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FIXED BED MEMBRANE REACTOR  
NH3 synthesis and  separation are 

simultaneously performed at lower 
temperature and lower pressure.

Ammonia synthesis
Membrane reactor

Retentate: H2 + N2

Permeate: NH3
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Catalysts for ammonia synthesis 
Second-generation catalysts
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Ru-based as second-generation catalysts for NH3 synthesis, due to the higher activity at lower
temperatures and pressures than the conventional iron catalyst.

Electron Donation controls nitrogen activation on ruthenium surface.

[07] Ertl G. – Primary steps in catalytic synthesis of ammonia – Journal of Vacuum Science & Technology A, v. 1, 1247-1253 (1983)
[08] Song Z. et al. – Structure and reactivity of Ru nanoparticles supported on modified graphite surfaces: A study of the model catalysts for ammonia synthesis – Journal of American Chemical Society, v. 126, 8576–8584 (2004)
[09] Huang J. et al. – Inhibited hydrogen poisoning for enhanced activity of promoters-Ru/Sr2Ta2O7 nanowires for ammonia synthesis – Journal of Catalysis, v. 389, 556-565 (2020)
[10] http://www.statista.com/statistics/1046426/ruthenium-price/ (Accessed on 12.06.2024)

http://www.statista.com/statistics/1046426/ruthenium-price/


Second-generation catalysts
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Ru-based as second-generation catalysts for NH3 synthesis, due to the higher activity at lower
temperatures and pressures than the conventional iron catalyst.

Main drawbacks:
 High cost;
 Hydrogen poisoning.

[07] Ertl G. – Primary steps in catalytic synthesis of ammonia – Journal of Vacuum Science & Technology A, v. 1, 1247-1253 (1983)
[08] Song Z. et al. – Structure and reactivity of Ru nanoparticles supported on modified graphite surfaces: A study of the model catalysts for ammonia synthesis – Journal of American Chemical Society, v. 126, 8576–8584 (2004)
[09] Huang J. et al. – Inhibited hydrogen poisoning for enhanced activity of promoters-Ru/Sr2Ta2O7 nanowires for ammonia synthesis – Journal of Catalysis, v. 389, 556-565 (2020)
[10] http://www.statista.com/statistics/1046426/ruthenium-price/ (Accessed on 12.06.2024)
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Catalysts for ammonia synthesis 

Electron Donation controls nitrogen activation on ruthenium surface.

http://www.statista.com/statistics/1046426/ruthenium-price/


Catalysts for ammonia synthesis 
Second-generation catalysts: B5 sites
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Dahl et al. have studied the sticking probability of dinitrogen on ruthenium. It has been shown that
the active site for N2 dissociation is the so-called B5-site, made of five ruthenium atoms: two at step
edges and three at the lower terraces.

Moreover, particle size effect of Ru-based catalysts for NH3 synthesis has been reported. Ruthenium
clusters with 1.8 – 3.5 nm diameter are believed to bear B5-site.

[11] Dahl S. et al. – Role of steps in N2 activation on Ru(0001) – Physical Review Letters, v. 83, 1814 (1999)
[12] Aika K. – Role of alkali promoter in ammonia synthesis over ruthenium catalysts - Effect on reaction mechanism – Catalysis Today, v. 286, 14-20 (2017)



Catalysts for ammonia synthesis  
Second-generation catalysts: Ceria and Magnesia as supports
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MgO: High Specific Surface Area and high density of basic
sites with strong interaction with Ru-clusters.

CeO2: enables electron donation from partially reduced
ceria atoms to metallic ruthenium.

MgOCeO2: Combination of the characteristics of both
supports.

[13] Aika K. et al. – Preparation and Characterization of Chlorine-Free Ruthenium Catalysts and the Promoter Effect in Ammonia Synthesis – Journal of Catalysis, v. 136, 126-140 (1992)
[14] Wang X. et al. – Highly efficient Ru/MgO–CeO2 catalyst for ammonia synthesis – Catalysis Communications – v. 12, 251-254 (2010)
[15] Javaid R. et al. – Effect of reaction conditions and surface characteristics of Ru/CeO2 on catalytic performance for NH3 synthesis as a clean fuel – International Journal of Hydrogen Energy, v. 46, 18107-18115 (2021)



Catalysts for ammonia synthesis  
Second-generation catalysts: Alkali metals as promotors
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Alkali 
Metals

Alkali metals can ensure the Ru-surface reconstruction
and influence the surface morphology of the catalyst.

The surfaces exposed could provide new active B5-sites
and, at the same time, they are more resistant to
poisoning by hydrogen.

[16] Linag C. et al. – Graphitic Nanofilaments as Novel Support of Ru–Ba Catalysts for Ammonia Synthesis - Journal of Catalysis, v. 211, 278-282 (2002)
[17] Narasimharao K. et al. – Carbon covered Mg–Al hydrotalcite supported nanosized Ru catalysts for ammonia synthesis – Journal of Molecular Catalysis A: Chemical, v. 411, 157-166 (2016)
[18] Javaid R. et al. – Influence of Reaction Conditions and Promoting Role of Ammonia Produced at Higher Temperature Conditions in Its Synthesis Process over Cs-Ru/MgO Catalyst – Chemistry Select, v. 4, 22184-2224 (2019)
[19] Zheng J. et al. – Efficient Non-dissociative Activation of Dinitrogen to Ammonia over Lithium-Promoted Ruthenium Nanoparticles at Low Pressure - Angewandte Chemie International Edition, v. 58, 17335-17341 (2019)

Cesium can promote the electron donation from
metallic ruthenium to the N2 triple bond.

Cs



Catalysts for ammonia synthesis  
Second-generation catalysts: Cluster size and synthesis methods
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Synthesis
method

Cluster size Reference
(nm)

Impregnation 2 - 30 [20],[21]

Co-precipitation 2 - 6 [22],[23]

Polyol Reduction 1 - 5 [24],[25]
 SIMPLE
 SINGLE-STEP PROCESS
 ALLOWS PREPARATION OF 

NANOSTRUCTURED POWDERS

[20] Hansen T. W. et al. – Support effect and active sites on promoted ruthenium catalysts for ammonia synthesis – Catalysis Letters, v. 84, 7-12 (2002)
[21] Liu J. et al. – Ru-nanoparticles embedded in mesoporous carbon microfibers: preparation, characterization and catalytic properties in the hydrogenation of D-glucose – Physical Chemistry Chemical Physics, v. 13, 3758-3763 (2010)
[22] Zhang L. et al. – Highly efficient Ru/Sm2O3-CeO2 catalyst for ammonia synthesis – Catalysis Communications – v. 15, 23-26 (2011)
[23] Komvokis V. G. et al. – Catalytic decomposition of N2O over highly active supported Ru nanoparticles (≤3nm) prepared by chemical reduction with ethylene glycol – Applied Catalysis B: Environmental, v. 103, 62-71 (2011)
[24] Miyazaki A. et al. – Preparation of Ru nanoparticles supported on γ-Al2O3 and its novel catalytic activity for ammonia synthesis – Journal of Catalysis, v. 204, 364-371 (1998)
[25] Fievet F. et al. – Preparing Monodisperse Metal Powders in Micrometer and Submicrometer Sizes by the Polyol Process, MRS Bulletin, v. 14, 29-34 (1989)



Catalysts for ammonia synthesis 
Polyol Reduction Method

Metal precursors

Polyhydric Alcohol 

HEATING TO REFLUX

FORMATION OF 
METALLIC PARTICLES

KOH solution

IONS REMOVAL CLEANING CALCINATION

Catalyst

ROLE OF ETHYLENE GLYCOL:
 Solvent for the starting compound
 Reducing agent for the metal species 
 Crystal growth medium for metal particles
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[25] Fievet F. et al. – Preparing Monodisperse Metal Powders in Micrometer and Submicrometer Sizes by the Polyol Process, MRS Bulletin, v. 14, 29-34 (1989)
[26] Anello G. et al. – Development of ruthenium-based catalysts for ammonia synthesis via polyol reduction method – International Journal of Hydrogen Energy, v. 86, 922-930 (2024)
[27] Komarneni S. et al. – Microwave-Polyol Process for Pt and Ag Nanoparticles, Langmuir, v. 18, 5959-5962 (2002)
[28] Saadatjou N. et al. – Ruthenium Nanocatalysts for Ammonia Synthesis – A Review, Chemical Engineering Communications, v. 202, 420-448 (2015)
[29] Fiévet F. et al. – The polyol process: a unique method for easy access to metal nanoparticles with tailored sizes, shapes and compositions – Royal Society of Chemistry, v. 47, 5187-5233 (2018)
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Catalysts for ammonia synthesis 
Catalysts list

17

[20] Anello G. et al. – Development of ruthenium-based catalysts for ammonia synthesis via polyol reduction method – International Journal of Hydrogen Energy, v. 86, 922-930 (2024)

Non-promoted 

catalysts

Promoted 

catalysts



Catalysts for ammonia synthesis   
Catalytic activity tests: Experimental conditions
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 Amount of catalyst: 1 g

 Amount of Silicon Carbide: 5 g

 Particle Size Distribution: 106 – 315 μm

 Reactor Inner Diameter: 10 mm

 Bed Length: ~ 50 mm

 Total Feed Flow Rate: 450 Nml∙min-1

 Feed Ratio: mol H2 : mol N2 = 2 : 1
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[20] Anello G. et al. – Development of ruthenium-based catalysts for ammonia synthesis via polyol reduction method – International Journal of Hydrogen Energy, v. 86, 922-930 (2024)



Catalysts for ammonia synthesis   
Catalytic activity tests: non-promoted catalysts
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[20] Anello G. et al. – Development of ruthenium-based catalysts for ammonia synthesis via polyol reduction method – International Journal of Hydrogen Energy, v. 86, 922-930 (2024)



Catalysts for ammonia synthesis   
Catalytic activity tests: promoted catalysts
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[20] Anello G. et al. – Development of ruthenium-based catalysts for ammonia synthesis via polyol reduction method – International Journal of Hydrogen Energy, v. 86, 922-930 (2024)
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Comparison with literature
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[16] Javaid R. et al. – Effect of reaction conditions and surface characteristics of Ru/CeO2 on catalytic performance for NH3 synthesis as a clean fuel – International Journal of Hydrogen Energy, v. 46, 18107-18115 (2021)
[20] Anello G. et al. – Development of ruthenium-based catalysts for ammonia synthesis via polyol reduction method – International Journal of Hydrogen Energy, v. 86, 922-930 (2024)
[29] Saito M. et al. – Synergistic effect of MgO and CeO2 as a support for ruthenium catalysts in ammonia synthesis – Catalysis Letters, v. 106, 107-110 (2006)
[30] Yang X. et al. – Low temperature ruthenium catalyst for ammonia synthesis supported on BaCeO3 nanocrystals – Catalysis Communications, v. 11, 867-870 (2010)
[31] Lin B. et al. – Morphology Effect of Ceria on the Catalytic Performances of Ru/CeO2 Catalysts for Ammonia Synthesis – Industrial & Engineering Chemical Research, v. 57, 9127-9135, (2018)
[32] Li W. et al. – Influence of CeO2 supports prepared with different precipitants over Ru/CeO2 catalysts for ammonia synthesis – Solid State Sciences v. 99, 105983 (2020)



Catalysts for ammonia synthesis   
Conclusions
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 Ru-based catalysts with different supports and Cs as promotor have been successfully synthetized
via polyol reduction method.

 The support and the promotor have a relevant influence on the surface characteristics of the
catalysts. More specifically, the electronic properties are fundamental in order to favor the
electron donation from metallic Ru to nitrogen triple bond.

 The Cs-Ru/CeO2 has shown better performances at lower temperature and pressure with a
production rate about 3 mmol∙h-1∙g-1 at 10 bar and 250°C. This suggests a promising route for
ammonia synthesis at milder condition.

[20] Anello G. et al. – Development of ruthenium-based catalysts for ammonia synthesis via polyol reduction method – International Journal of Hydrogen Energy, v. 86, 922-930 (2024)



Catalysts for ammonia decomposition 
Catalytic formulation: Ruthenium and B5-sites

Moreover, ruthenium clusters with 1.8 – 3.5 nm diameter are believed to bear B5-site.

[07] Kim H. et al. – Ammonia decomposition over Ru catalysts supported on alumina with different crystalline phases – Catalysis Today, v. 411–412, 2023, 113817
[11] Dahl S. et al. – Role of steps in N2 activation on Ru(0001) – Physical Review Letters, v. 83 (1999)
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Catalysts for ammonia decomposition 
Catalysts list

Catalyst Cs loading Ru loading Cs/Ru ratio
wt% wt% w/w

3RuCeO2 - 3 -

5RuCeO2 - 5 -

7RuCeO2 - 7 -

2Cs-5RuCeO2 2 5 0.4

10Cs-5RuCeO2 10 5 2

Ru-loading 

investigation
Cs/Ru mass ratio 

investigation

24

[33] Anello G. et al. – Low-temperature ammonia decomposition over CsRuCeO2 produced via polyol reduction method – In preparation
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Catalysts for ammonia decomposition 
Activity tests
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 Amount of catalyst: 1 g

 Amount of Silicon Carbide: 5 g

 Particle Size Distribution: 150 – 250 μm

 Reactor Inner Diameter: 10 mm

 Reactor Length: ~ 50 mm

 GHSV: 6 000 – 30 000 Nml gcat h-1
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Catalysts for ammonia decomposition 
Activity tests: Ruthenium loading investigation
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[33] Anello G. et al. – Low-temperature ammonia decomposition over CsRuCeO2 produced via polyol reduction method – In preparation



Catalysts for ammonia decomposition 
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[33] Anello G. et al. – Low-temperature ammonia decomposition over CsRuCeO2 produced via polyol reduction method – In preparation

P = 1 bar, GHSV = 6 000 NmlNH3 gcat
-1 h-1

Activity tests: Cs/Ru ratio investigation

+ 33% (@350°C, 1bar)



Catalysts for ammonia decomposition 
X-Ray Diffractometry analysis
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[33] Anello G. et al. – Low-temperature ammonia decomposition over CsRuCeO2 produced via polyol reduction method – In preparation
[34] Peng Z. et al. – Uniform dispersion of ultrafine ruthenium nanoparticles on nano-cube ceria as efficient catalysts for hydrogen production from ammonia-borane hydrolysis, Sustain. Energy Fuels, v. 7, 821-831 (2022)



Catalysts for ammonia decomposition 
XPS deconvoluted spectra Cerium 3d
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[21] Anello G. et al. – Low-temperature ammonia decomposition over CsRuCeO2 produced via polyol reduction method – In preparation
[35] Lin B. et al. – Effect of ceria morphology on the catalytic activity of Co/CeO2 catalyst for ammonia synthesis – Catalysis Communication v. 101, 15-19 (2017)
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Catalysts for ammonia decomposition 
Pressure influence
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[33] Anello G. et al. – Low-temperature ammonia decomposition over CsRuCeO2 produced via polyol reduction method – In preparation

GHSV = 6 000 NmlNH3 gcat
-1 h-1



Catalysts for ammonia decomposition 
Stability tests

[33] Anello G. et al. – Low-temperature ammonia decomposition over CsRuCeO2 produced via polyol reduction method – In preparation
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Catalysts for ammonia decomposition 
Mass transfer limitation evaluation
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[36] Talebian-Kiakalaieh A. et al. – Theoretical and experimental evaluation of mass transfer limitation in gas phase dehydration of glycerol to acrolein over supported HSiW catalyst, Journal of the Taiwan Institute of Chemical Engineer, v. 59 (2016)
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 Ru-based-CeO2-supported catalysts where successfully synthesized via PRM.

 The non-promoted catalyst (5Ru/CeO2) allowed an ammonia conversion reaching the equilibrium

already between 375 and 400°C (1 bar, 6 000 NmlNH3 gcat
-1 h-1).

 The addition of cesium (2Cs-5Ru/CeO2) to the catalytic formulation resulted in an increase of

ammonia conversion by 33% ( 350°C, 1 bar, , 6 000 NmlNH3 gcat
-1 h-1).

 The overall conversion decreased less then 1% over 500 hours of test at 400°C, proving the high

stability of the synthesized catalyst over time.
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