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𝑁𝑁2 + 3𝐻𝐻2 2𝑁𝑁𝐻𝐻3 (∆𝐻𝐻298𝐾𝐾) = −90 𝑘𝑘𝑘𝑘/𝑚𝑚𝑚𝑚𝑚𝑚

Challenges:

• high inlet temperature 
to achieve high 

reaction rate 
• high pressure to 

achieve a high 
equilibrium conversion
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Effective heat management
Energy efficiency
Process intensification

for in-situ removal of NH3, 
shifting the equilibrium conversion

Mathematical model: study of the packed bed membrane reactor (PBMR) phenomenology

Steady-state total continuity equation: mass balance

Steady-state partial continuity equation: mass balance

Steady-state partial continuity equation: energy balance

Steady-state partial continuity equation: momentum balance (Ergun equation)

Simulation results: design and scaling-up solutions due to the diffusion phenomena

Conclusions

Geom. Lmem 
[m]

DR 
[m]

Production 
capacity 
[g/hr]

Purity 
[%]

Catalyst 
weight 

[g]
1 mem 1 0.053 68.4 45.3 235
5 mem 1 0.053 62.5 34.3 175

No wall cooling TW=TIN=653 K TW=TAVE=683 K

2D model was 
validated with   

kinetic 
experimental test 

from literature and 
permeation lab 

experimental test 

2D model 
outperform 1D 

model even when  
𝑟𝑟
𝐿𝐿
≪ 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 ≪ 𝐿𝐿

𝑟𝑟
. 

This is due to the 
diffusion 
limitation

Optimal
membrane 

reactor conditions 
were found for 

different 
geometries

Reactor length 
study showed the 
advantage to have 

a multitube 
membrane reactor 

in terms of 
catalyst mass

Cooling strategy 
study showed 
that too much 

low temperature 
slows down the 

kinetic

Diffusion limitation: Concentration polarization phenomena

Diameter investigation

Multi-tubular membrane reactor 
to enhance membrane separation

Cooling strategy

Renewable 
energy

Ammonia
synthesis

Ammonia transport 
and storage

Ammonia 
decomposition

Ammonia direct
utilization

Hydrogen 
utilization

NH3

H2
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∇ � 𝒖𝒖𝑃𝑃 𝑅𝑅𝑖𝑖𝑃𝑃 + ∇ � (−𝐷𝐷𝑖𝑖∇𝑅𝑅𝑖𝑖𝑃𝑃) = 0
𝒖𝒖𝑃𝑃 · ∇𝑇𝑇𝑃𝑃 + ∇ � (−𝛼𝛼𝑃𝑃∇𝑇𝑇𝑃𝑃) = 0

∇ � (𝜌𝜌𝒖𝒖) = 0

∇ � 𝒖𝒖𝑅𝑅 𝑅𝑅𝑖𝑖𝑅𝑅 + ∇ � (−𝐷𝐷𝑖𝑖∇𝑅𝑅𝑖𝑖𝑅𝑅) = 𝑟𝑟𝑖𝑖

𝒖𝒖𝑅𝑅 · ∇𝑇𝑇𝑅𝑅 + ∇ � (−𝛼𝛼𝑅𝑅∇𝑇𝑇𝑅𝑅) =
𝑟𝑟𝑟𝑟𝐻𝐻𝑟𝑟
𝜌𝜌𝑔𝑔𝐶𝐶𝑃𝑃,𝑔𝑔

𝜕𝜕𝑃𝑃𝑅𝑅

𝜕𝜕𝑧𝑧
= −

150 𝜇𝜇𝑚𝑚𝑖𝑖𝑚𝑚 𝒖𝒖𝑅𝑅 1 − 𝜀𝜀 2

𝜀𝜀3 𝑑𝑑𝑝𝑝2
+

1.75 1 − 𝜀𝜀 𝜌𝜌𝑚𝑚𝑖𝑖𝑚𝑚 𝒖𝒖𝑅𝑅
2

𝜀𝜀3 𝑑𝑑𝑝𝑝

Retentate

Permeate

P=5 bar

Deviations become more 
evident because the 

membrane is not able to 
effectively separate

Sweep gas

With a broader reactor, NH3
increases due to a higher inlet flow 
rate

With a broader reactor, NH3 recovery 
decreases due to the diffusion limitation 
phenomena

Using 5 membranes of 0.2 m length each (total 1 m), the 
production capacity would be 8.6% lower than using one 
membrane of 1 m length, but it would still require 25% 

less catalyst

Novel
solution to 
overcome 

these 
limitations

P=30 bar
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