SCALE UP OF STRUCTURED CATALYSTS FOR AMMONIA SYNTHESIS

Dr. Antonio Vita

Institute CNR-ITAE, Via Salita S. Lucia sopra Contesse n. 5, 98126 S. Lucia, Messina, Italy

Ammonia as Energy Carrier

Webinar October 17rd 2024

WHY AMMONIA?

AMMONIA AS ENERGY CARRIER VIA AMMONIA SYNTHESIS AND DECOMPOSITION

THE DECARBONISATION OF AMMONIA PRODUCTION

Green Ammonia production "Drawbacks" **Renewable energy** ٠

The capital expenditure for a green ammonia production plant is dominated by the electrolyzer cost

Electrolyser

energy supply for green The hydrogen feedstock is significantly greater than the electricity demand for the HB process.

AMMONIA PRODUCTION ON A LARGE SCALE

Flow Diagram for the Multi-step Haber-Bosch Ammonia Production Process

THE DECARBONISATION OF AMMONIA PRODUCTION

Scale-Down and Intermittency issues

"Renewable sources of energy such as biomass, solar, wind or geothermal are characterized by a highly distributed production across regions"

- Distributed production corresponds to the production at small scales, for green ammonia production the step forward is dawn-size of large-scale plant and modularization;
- A large-scale ammonia plant ($\geq 1000 t_{NH3}/d$) consumes about 2–7 GJ/ t_{NH3} for pressurizing, heating, pumping and utilities;
- At intermediate scales (3–20 t_{NH3}/d), this energy consumption increases to typically 13–14 GJ/t_{NH3};
- At very small scales (<0.1 t_{NH3}/d), heat is even required to keep the ammonia synthesis reactor at the synthesis temperature due to radial heat losses, and hydrogen and nitrogen production also becomes less efficient
- Intermittent **solar power and wind power cause variations in electricity supply**. Therefore, the synthesis loop should either be able to ramp up and down fast, or batteries should be installed to operate the synthesis loop at constant load

Consiglio Nazionale delle Ricerche Energy consumption of various electrolysisbased Haber-Bosch processes (academic and industrial estimates).

The bold line represents the thermodynamic minimum energy consumption (22.5 GJ/ $t_{\rm NH3}$)

 $E = (52.58 \times \log_{10}(\text{capacity in kg/h}))^{-0.30}$

Upon scale-down, heat losses increase and the energy consumption increases

AMMONIA AND MOF BASED HYDROGEN STORAGE FOR EUROPE

WP3 "Key materials and components for long term Hydrogen Storage"

Task 3.3: Bench-scale (TRL 4) 3D printed POCS and novel JM catalysts:

Subtask 3.3.1: Design, manufacture and heat transfer performance characterization (under non-reactive conditions) of 3D printed POCS and commercial open cell foam [ENGIE. M1-M24] **Subtask 3.3.2:** Catalytic activation, characterization and performances of thermal conductive open-cell foams and POCS with commercial reference catalyst (1st generation) [CNR, ENGIE. M1-M24]

Subtask 3.3.3: Preparation and tests of novel Fe, Ru based catalysts [JM. M1-M24] **Subtask 3.3.4:** Preparation of structured catalysts (2nd generation) for single CMR [CNR, ENGIE, TUE. M20-M24]

Subtask 3.5.2: Fabrication of structured catalysts (POCSs activated with novel catalyst) for single membrane reactor (TRL4) and the demonstrator plant (TRL5) [CNR, ENGIE, JM, M30-40]

Periodical Open Cellular Structures (POCS) 3D printed

⊗AMB**H**ER

Funded by the European Union

Detailed design with Netfabb software

POCSs Manufacturing

Periodical Open Cellular Structures (POCS)

Material	Cell type	Cell size (mm)	Strut diame ter (mm)	Volume (cm ³)	Surface (cm ²)	Surface/ Volume r atio	Theor. Rel ative Dens ity
Al alloy	BCC	3	0.6	0.220	12.94	58.82	0.17
(AlSi10Mg)	Kelvin	3	0.6	0.290	15.23	52.52	0.21
Cu alloy (CuNi2SiCr)	Kelvin	3	0.6	0.290	15.23	52.52	0.21

Material	Cell type	Cell size (mm)	Strut diameter (mm)	Volume (cm ³)	Surface (cm ²)	Surface/ Volume ratio	Theor. Rel ative Dens ity
		3	0.6	0.290	15.23	52.52	0.21
		4	0.6	0.153	9.08	59.37	0.11
		3	0.8	0.518	16.93	32.68	0.36
Ni alloy	Kelvin	3	0.4	0.126	11.21	88.97	0.10
(IN625)	Keiviii	1.5	0.3	0.292	29.79	102.02	0.23
		4	0.8	0.278	11.39	40.97	0.19
		2	0.4	0.288	22.46	78.00	0.22
		2	0.6	0.631	25.20	39.94	0.45

Ø = 1cm, L = 1.5cm

POCSs Manufacturing

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

Funded by the European Union

Planetary Ball Mill BM40 220V, 50Hz, with 4 Final scale-up for prototype Scale-up strategy Catalyst amount for slurry preparation: • Intermediate scale-up grinding stations 50-500g Influence of : Catalyst amount for slurry preparation: 5g Influence of : Equipment size; Microscale studies Slurry optimisation; 2 Coating process optimization; POCS size: Ø= 1-5cm. POCS size: L=5-15cm Influence of : Ø= Icm, L=1.5 Slurry composition; 1a Support pre-treatment 1b Slurry preparation Ø = 51 cm, L = 10 - 20 cm Surface Cleaning Powder ball milling Catalyst formulation; Sonication (Wat./Ac. - 50/50), 30 min -> drving 120°C. 1h. 300 mm, 3 h. NaOH (1M), 2 min. Powder ball milling rate; Suspension ball milling Thermal treatmen 900°C, 6 h. 200 rpm, 24 h. Slurry ball milling time; Washcoating Support Thermal Treatment; Slurry deposition Dip/Spin coating, 1000 rpm, 0.1-0.25g/cm² Support Anodization; Primer (Disperal P2) utilization; 3 Flash drying 4 Calcination Support geometry (BCC, Kelvin); 45010 10 450°C 6b Calcination temperature and time; NiCeO2 NiCeO2 POCSs sand-blasted pretreatment; AI203 Mechanical stability Ø = 2,66cm Ø = 2cm Ø = 4cmL = 10cm L = 10cm L = 10 cmSlurry composition Glycerol Water Solid PVA 42.5 33.6 22.4 1.5 Ø = 4 cmØ = 2cmL = 5 cmØ = 1cm, L = 1.5cm L = 5 cmalantan hadaa h

Funded by the European Union

Morphological characterizations and porosity

Material	Cell type	Cell size (mm)	Strut diameter (mm)	** Solid Volume (cm ³)	** Solid density (g/cm ³)	Internal Surface area (cm ²)	** Porosity (%)	Geom. density (g/cm ³)	Specific surf. area (cm ² /cm ³)	Relative density
IN625	BCC	2 (2*)	0.4 (0.41*)	0.219	10.87	9.45	82.9	2.80	87.03	0.17
IN625	BCC	2 (2*)	0.6 (0.6*)	0.489	8.79	24.52	63.9	2.02	48.77	0.36
IN625	BCC	3 (3*)	0.4 (0.4*)	0.099	11.31	19.06	92.1	3.65	95.66	0.08
IN625	BCC	3 (3*)	0.6 (0.59*)	0.220	8.86	23.85	83.3	0.95	58.82	0.17
IN625	BCC	3 (4*)	0.8 (0.75*)	0.395	4.41	9.47	71.5	1.66	39.01	0.29
IN625	BCC	4 (4*)	0.6 (0.62*)	0.116	9.14	12.94	91.2	1.48	64.48	0.09
IN625	BCC	4 (3*)	0.8 (0.75*)	0.206	16.02	15.41	85.2	0.90	45.85	0.15
IN625	BCC	1.5(1.5*)	0.3 (0.3*)	0.212	12.08	7.48	83.3	2.80	115.66	0.17

Measured value: *Calculated from optical images, **Calculated from He pycnometer measurement

Ø = 1cm, L = 1.5cm

Optical microscope images of as-built BCC Ni-alloy POCS

Cell Type = 3, Ø Strut =0.4mm, $SSA = 95.66 \text{ cm}^2/\text{cm}^3$, Porosity = 92%

Cell Type = 3, Ø Strut =0,6 mm,

Cell Type = 3, Ø Strut =0,8 mm, SSA = 58,82 cm²/cm³, Porosity = 83,3% SSA = 39,01 cm²/cm³, Porosity = 71,3%

Elium pycnometer (Model 1305 Multivolume, Micromeritics)

SEM micrographs

Funded by the European Union

Pressure drop

Morphological characterizations and porosity

Material	Cell type	Cell size (mm)	Strut diameter (mm)	**Solid Volume (cm ³)	** Solid density (g/cm ³)	Internal Surface area (cm ²)	** Porosity (%)	Geom. density (g/cm ³)	Specific surf. area (cm ² /cm ³)	Relative density
IN625	KELVIN	2 (2*)	0.6 (0.4*)	0.631	9.30	25.20	54.5	4.99	39.94	54.5
IN625	KELVIN	3 (3.04*)	0.4 (0.44*)	0.126	14.21	11.21	90.4	1.52	88.97	90.4
IN625	KELVIN	3 (3*)	0.6 (0.69*)	0.290	10.14	15.23	78.7	2.50	52.52	78.7
IN625	KELVIN	3 (3*)	0.8 (0.86*)	0.518	9.42	16.93	64.4	4.14	32.68	64.4
IN625	KELVIN	4 (4*)	0.6 (0.61*)	0.153	10.85	9.08	88.6	1.41	59.37	88.6

Measured value: *Calculated from optical images, **Calculated from He pycnometer measurement

Ø = 1cm, L = 1.5cm

Funded by

the European Union

Optical microscope images of as-built kelvin Ni-alloy POCS

Cell Type = 3, Ø Strut =0.4mm, SSA = 88.9 cm²/cm³, Porosity = 90.4%

Cell Type = 3, Ø Strut =0,6 mm, SSA = 52,52 cm²/cm³, Porosity = 78,7%

Cell Type = 3, Ø Strut =0,8 mm,

 $SSA = 32,68 \text{ cm}^2/\text{cm}^3$, Porosity = 64.4%

Elium pycnometer (Model 1305 Multivolume, Micromeritics)

SEM micrographs

Funded by the European Union

D Pressure drop

- Morphological characterizations and porosity
- Optical microscope images of as-built GIROYD Ni-alloy Triply Periodic Minimal Surface (TPMS) structure

Cell Type = 3, Ø Strut =0.23mm, SSA = 20.4 cm²/cm³, Porosity = 79%

Ø = 1cm, L = 1.5cm

u (m/s)

BCC

KELVIN

Funded by the European Union

 \bigcirc AMBHER

Cell Type = 3, Ø Strut =0.4mm, $SSA = 20.4 \text{ cm}^2/\text{cm}^3$, Porosity = 79%

Consiglio Nazionale

engie

Cell Type = 3, Ø Strut =0,4 mm, $SSA = 88,97 \text{ cm}^2/\text{cm}^3$, Porosity = 90,4%

Cell Type = 3, Ø Strut =0,4 mm, $SSA = 95,66 \text{ cm}^2/\text{cm}^3$, Porosity = 92,1%

Experimental validation of CFD model a) BCC b) Kelvin c) Gyroid

a)

indicated by a dashed line.

BCC cell 3-0.6

Funded by

the European Union

Consiglio Nazionale

engie TU/e

Check for

💌 A M B 🕂 E R

Pressure drop comparison on various structures

Chemical Engineering Journal 492 (2024) 152005

Contents lists available at ScienceDirec **Chemical Engineering Journal** LSEVIER journal homepage: www.elsevier.com/locate/cej

Comparison of thermo-hydraulic performance among different 3D printed periodic open cellular structures

S. Richard^{a, d, *}, D. Tasso^a, M. Rajana^a, A Saker^a, A. Ramirez Santos^a, C. Makhloufi^a, N. Meynet^a, B. Hary^b, S. Nardone^b, G. Marino^c, M. Thomas^c, C. Italiano^c, A. Vita^c, F. Gallucci^d

* ENGIE Lab CRIGEN, 4 Rue Joséphine Baker, Stains, France

ENGIE Lab CROEN, 4 Rue Josephine Baker, Stans, France ENGIE Laborelec, Rodestraat 125, 1630 Linkebeek, Belgium ^e CNR-ITAE, Via Salita S. Lucia sopra Contesse n.5, S. Lucia, 98126 Messina, Italy

Sustainable Process Engineering, Chemical Engineering and Chemistry, Rindhown University of Technology, Den Dolech 2, 5612 AZ, Eindhown, the Netherlands

hydrodynamic porosity vs. theoretical The printed samples porosity. The 15% error margin is closely resemble their **CAD counterparts**

ACTIVATION OF NI-ALLOY POCS BY COMBINED DIP/SPIN COATING METHOD

Optimized dip/spin coating method

Main steps involved in the preparation of structured catalysts by washcoating

□ Activation of Ni-Alloy POCS and TPMS by combined dip/spin coating method

Slurry preparation with a 5wt%Ru/Al₂O₃ catalyst for the activation of KELVIN, BCC and GYROYD structures

Consiglio Nazion

Funded by the European Union

Cat. loading: 0,272g (0.23 g/cm³, 0.014g/cm²)

Cat. loading: 0,232 (0.19 g/cm³, 0.012 g/cm²)

Cell Type = 3, Ø Strut =0,4 mm, SSA = 95,66 cm²/cm³, Porosity = 86,17%

Cell Type = 3, Ø Strut =0,6 mm, SSA = 58,82 cm²/cm³, Porosity = 75,89% Cat. loading: 0,241 (0.20 g/cm³, 0.015g/cm²)

Ø = 1cm, L = 1.5cm

Slurry Composition Glycerol Water 42.5 % Solid PVA 22.4 %

Cell Type = 3, Ø Strut =0,8 mm, SSA = 39,01 cm²/cm³, Porosity = 66.61%

Catalyst Thickness = $\frac{m_{ ext{catalyst}}}{\text{SSA}_{ ext{POCS}} \times V_{ ext{POCS}} \times d_{ ext{layer}}}$

POCS type	Cell size (mm)	Strut diameter (mm)	Solid Volume (cm³)	Surface (cm²)	Surface/Volume ratio (cm²/cm³)	Geometric V _{POCS} (cm³)	Catalyst loaded (g)	Density cat. layer (g _{cat.} /cm³)	Thickness (µm)
BCC	3	0,4	0,099	9,47	95,66	1,178	0,272	1,4	17,24
BCC	3	0,6	0,220	12,94	58,82	1,178	0,232	1,4	23,92
BCC	3	0,8	0,395	15,41	39,01	1,178	0,241	1,4	37,46

Coating of KELVIN Ni-Alloy POCS with a commercial 5wt%Ru/Al₂O₃ catalyst 2^{AMBHER}

Cat. loading: 0,202g (0.17 g/cm³, 0.014g/cm²)

Cell Type = 3, Ø Strut =0,4 mm, SSA = 88,96 cm²/cm³, Porosity = 81,9%

Cat. loading: 0,234 (0.20 g/cm³, 0.012 g/cm²)

Cell Type = 3, Ø Strut =0,6 mm, SSA = 52,52 cm²/cm³, Porosity = 70,75%

Cat. loading: 0,225 (0.19 g/cm³, 0.01g/cm²)

Cell Type = 3, Ø Strut =0,8 mm, SSA = 32,68 cm²/cm³, Porosity = 51.54% Ø = 1cm, L = 1.5cm

Consiglio Naziona

engie

Funded by the European Union

Catalyst Thickness = $\frac{m_{\text{catalyst}}}{\text{SSA}_{\text{POCS}} \times V_{\text{POCS}} \times d_{\text{layer}}}$

POCS type	Cell size (mm)	Strut diameter (mm)	Solid Volume (cm³)	Surface (cm²)	Surface/Volume ratio (cm²/cm³)	Geometric V _{POCS} (cm³)	Catalyst loaded (g)	Density cat. layer (g _{cat.} /cm³)	Thickness (µm)	
Kelvin	3	0,4	0,126	11,21	88,97	1,178	0,202	1,4	13,77	
Kelvin	3	0,6	0,290	15,23	52,52	1,178	0,234	1,4	27,02	
Kelvin	3	0,8	0,518	16,93	32,68	1,178	0,225	1,4	41,74	

Pressure drop (comparison Gyroid, Kelvin, BCC) influence of coating

Slurry preparation with novel JM catalyst (Ru-based) for the activation of KELVIN, BCC and GYROYD structures

Rheological behaviour of slurry formulation (flow curve)

	Catalyst (g)	PVA (g)	Glycerol (g)	Water (g)	Ethanol (g)	No. Balls (1cm)	Volume of slurry (ml)
Batch 1	5	0.34	9.5	7.5	2	7	~16

Loading curves

Slurry preparation with novel JM catalyst (Ru-based) for the activation of KELVIN, and BCC POCS

Support	Bare	Calcined	Washcoated	Calcined WC		Support	Bare	Calcined	Washcoated	Calcined WC
KELVIN Cell size: 3 Strut size: 0.4 (mm)				000		BCC Cell size: 3 Strut size: 0.4 (mm)				
KELVIN Cell size: 3 Strut size: 0.6 (mm)						BCC Cell size: 3 Strut size: 0.6 (mm)				
KELVIN Cell: 3 Strut size: 0.8 (mm)		1000				BCC Cell size: 3 Strut size: 0.8 (mm)	0000		00000	

Ø = 1cm, L = 1.5cm

Slurry preparation with novel JM catalyst (Ru-based) for the activation of Triply Periodic Minimal Surface (TPMS) GYROYD structures Ø = 1cm, L = 1.5cm

Support	Bare	Calcined	Washcoated	Calcined WC
GYROID Cell size: 3 Sheet size: 0.2 (mm)				
GYROID Cell size: 3 Sheet size: 0.3 (mm)				
GYROID Cell size: 3 Sheet size: 0.4 (mm)				
GYROID Cell size: 5 Sheet size: 0.34 (mm)				

Catalytic activity (test set up)

Test rig for the evaluation of catalytic performances of catalysts towards the ammonia synthesis up to 50 bar

O	perative conditions							
Temperature	300 - 550 (°C)							
Pressure	20 (bar)							
WSV	41379 (cm ³ g _{cat} ⁻¹ h ⁻¹)							
GHSV	9172 (h ⁻¹)							
Total IN Flow	90 - 540 cm³/min							
H_2/N_2	3:1 (H2 = 75%, N2 = 25%)							
Catalyst	JM (Ru) –based AN5750							

Schematic flow of the ammonia synthesis catalyst test setup.

Catalytic tests at microscale with JM catalyst coated on POCS – Influence of geometry (KELVIN)

Ø = 1cm, L = 1.5cm

*S*AMB*H*ER

Consiglio Nazionale

engie JM

SAMBHER Consiglio Nazionale Consigle O Marianale

Catalytic tests at microscale with JM catalyst coated on POCS – Influence of geometry (KELVIN)

Coating	Cell type	Solid Volume (cm³)	Solid Density (g/cm³)	Porosity (%)	WC g _{cat} (g) g _{cat} /V _{pyc} (g/cm ³)	Material	Cell type	Cell Size (mm)	Strut Diameter (mm)	Solid Volume (cm³)	Solid Density (g/cm³)	Internal Surface area (cm²)	Porosity (%)	Geom. Density (g/cm³)	Specific Surf. Area (cm²/cm³)	Relative density	WC g _{cat} g _{cat} /V _{geom}
JM-4	KELVIN 3-0.4	0.248**	8,2497**	78.91**	0.266 1.071**	IN625	KELVIN	3 (3.01*)	0.4 (0.42*)	0.126 (0.217**)	14.21 (8.2386**)	11.21	90.4 (81.94**)	1.52	88.97	0.10	0.266 0.226***
JM-4	KELVIN 3-0.6	0.382**	8,2924**	67.59**	0.247 0.647**	IN625	KELVIN	3 (3*)	0.6 (0.6*)	0.290 (0.350**)	10.14 (8.3484**)	15.23	78.7 (70.75**)	2.50	52.52	0.21	0.247 0.210***
JM-4	KELVIN 3-0.8	0.607**	8.4046**	48.46**	0,242 0.399**	IN625	KELVIN	3 (3*)	0.8 (0.81*)	0.518 (0.577**)	9.42 (8.4166**)	16.93	64.4 (51.64**)	4.14	32.68	0.36	0,242 0,206***

Catalytic tests at microscale with JM catalyst coated on POCS – Influence of geometry (KELVIN, BCC, GYROID)

Ø = 1cm, L = 1.5cm

Catalytic tests at microscale with JM catalyst coated on POCS – Influence of geometry (KELVIN, BCC,

Coating	Cell type	Solid Volume (cm³)	Solid Density (g/cm³)	Porosity (%)	WC g _{cat} (g) g _{cat} /V _{pyc} (g/cm ³)	Material	Cell type	Cell Size (mm)	Strut Diameter (mm)	Solid Volume (cm³)	Solid Density (g/cm³)	Internal Surface area (cm²)	Porosity (%)	Geom. Density (g/cm³)	Specific Surf. Area (cm²/cm³)	Relative density	WC g _{cat} g _{cat} /V _{geom}
JM-4	KELVIN 3-0.4	0.248**	8,2497**	78.91**	0.266 1.071**	IN625	KELVIN	3 (3.01*)	0.4 (0.42*)	0.126 (0.217**)	14.21 (8.2386**)	11.21	90.4 (81.94**)	1.52	88.97	0.10	0.266 0.226***
JM-4	BCC 3-0.4	0.165**	8,2134**	83.46**	0.261 1.071**	IN625	BCC	3 (3*)	0.4 (0.4*)	0.099 (0.165**)	11.31 (8.213**)	19.06	92.1 (86.01**)	3.65	95.66	0.08	0.261 0.222***
JM-4	GYROID 5-0.34	0.3577**	8.4203**	69.62**	0.260 0.727**	IN625	GYROID	5 (5.18*)	0.34 (0.34*)	(0.325**)	(8.4966**)	14.51	(72.40**)	Not reported	59.22	0.791	0.260 0.221***

CATALYTIC ACTIVITY – AMMONIA DECOMPOSITION

Catalytic tests at microscale with 5wt%Ru/CeO₂ – Influence of geometry (KELVIN, BCC, GYROID)

Performances of Ni-Alloy structures activated by 5wt%Ru/Al2O3, influence of Strut size (0.4, 0.34mm) and cell size (5, 3mm). GYROID 0.34: (Cell size = 5, catalyst loading = 0.225g, 0.19g/cm3, WSV = 27067cm3gcat-1 h-1), BCC 0.6: (catalyst loading = 0.232g, 0.2g/cm3, WSV = 26250 cm3gcat-1 h-1), KELVIN 0.6: (catalyst loading = 0.234g, 0.2g/cm3, WSV = 26154 cm3gcat-1 h-1). Operating conditions: He = 54%vol., NH3 = 46%vol., P = 1 bar, T = 400-600°C, total flow = 102 cm3 min-1, GHSV = 5172 h-1.

Cell	Cell	Strut/sheet	Salid Valuma	Solid	Internal	Deresity	Surface/Solid	Cat. Layer
tine	Size	Size	(cm ³)	Density	Surface area	(%)	Vol.	thickness
туре	(mm)	(mm)		(g/cm ³)	(cm²)	(70)	(cm ² /cm ³)	(µm)
BCC 0.6	3	0.6	0.220	8.86	40.04	83.3	50.00	(00.00****)
	(3*)	(0.59*)	(0.284**)	(8.40**)	12.94	(75.89***)	58.82	(23.92****)
	3	0.6	0.290	10.14	45.00	78.7	50.50	(07.00****)
KELVIN 0.6	(3*)	(0.61*)	(0.344**)	(8.50**)	15.23	(70.75***)	52.52	(27.02****)
	5	0.34	0.245	11.26		79.2	50.00	(00.44****)
GYROID 0.34	(5.18*)	(0.34*)	(0.325**)	(8.49**)	14.51	(72.40***)	59.22	(26.11****)

Given Scale-up of the dip/spin coating method (second generation of POCS)

□ Scale-up of the dip/spin coating method (second generation of POCS)

Batch 2 and 3 were used for coating large supports

Scale-up of the dip/spin coating method

BCC

Gyroid

Kelvin

Catalyst: Commercial 0.5wt%Ru/Al₂O₃

	Catalyst (g)	PVA (g)	Glycerol (g)	Water (g)	Ethanol (g)	No. Balls (1cm)	Volume of slurry (ml)
Batch 1	5	0.34	9.5	7.5	2	7	~16
Batch 2	10	0.68	19	15	4	14	~32
Batch 3	35	2.38	66.5	52.5	14	50	~155

□ Scale-up of the dip/spin coating method (second generation of POCS)

□ Scale-up of the dip/spin coating method (second generation of POCS)

Catalyst: Commercial 5wt%Ru/Al₂O₃

Slurry Composition

Rheological behaviour of slurry formulation (flow curve)

	Catalyst (g)	PVA (g)	Glycerol (g)	Water (g)	Ethanol (g)	No. Balls (1cm)	Volume of slurry (ml)
Batch 3	35	2.38	66.5	52.5	14	50	~155

- □ Scale-up of the dip/spin coating method (third generation of BCC and GYROID)
- Design and realization of a new specimen holder for the spin-coater to host supports with size for the demonstrator

□ Scale-up of the dip/spin coating method (third generation of BCC and GYROID)

Sizes

Туре	Size	BCC Cell/Strut (mm)	Gyroïd Cell/Strut (mm)
Single-membrane BCC/GYROID (for washcoating)	H=100 mm / Φint = 15,2 mm , Φext = 26,6mm	3/0,4	3/0,6
Single-membrane supports with outer skin (for packed – BCC/GYROID)	H=100 mm / Φint = 15,2 mm , Φext = 26,6mm	3/0,4	3/0,6
Demonstrator: BCC/GYROID for washcoating (4 membranes + 1 thermocouple)	H=100 mm / Φholes = 15,2 mm, Φext = 51,1 mm, Φther m = 7 mm	3/0,4	3/0,6
Demonstrator with outer skin: for packed – BCC/GYROID (4 membranes + 1 thermocouples)	H=100 mm / Φholes = 15,2 mm, Φext = 51,1 mm, Φther m = 7 mm	3/0,4	3/0,6

□ Scale-up of the dip/spin coating method (third generation of BCC and GYROID)

• Amount of catalyst required

Catalyst Features		co/	ATED POCS Feature	es (Micro	-scale)		COATED POCS Features (Prototype) Note: The volume of the holes to host membranes was not removed				
Catalyst	-	POCS/TPMS	POCS/TPMS	Catalyst loaded		Slurry Vol.		POCS/TPMS	Catalyst loaded		
code	Formulation	Туре	Volume (cm ³)	g	g/cm ³	cm ³	POCS/TPMS Type	Volume (cm ³)	g	g/cm ³	
JM (AN4750)	Ru-based	BCC Cell=3, Strut= 0.4mm , L=1.5cm; Ø=1cm	1,1775	0,261	0,222	16 (for 8-10 POCS) -5g of catalyst	BCC Cell=3, Strut= 0.4mm, L=20 cm; Ø=5,11cm	409,96	90	0,220	
JM (AN4750)	Ru-based	GYROID Cell=5, Strut= 0.34m m, L=1.5cm; Ø=1cm	1,1775	0,260	0,221	16 (for 8-10 POCS) - 5g catalyst	GYROID Cell=5, Strut= 0.34mm, L=20cm; Ø=5,11cm	409,96	90	0,220	
JM (AN4750)	Ru-based	SINGLE MR - BCC Cell=3, Strut= 0.4mm , L=10cm; Ø=2.66cm with hole (1,08cm)	46,38722	10,200	0,220	155 (For 3-4 POCS), 35g catalyst					

□ Scale-up of packing method (third generation of BCC and GYROID)

• Amount of catalyst required

Catalyst Features		PACKED POCS Features (Micro-scale)					PACKED POCS Features (Prototype) Note: The volume of the holes to host membranes was not remove					
				d								
Catalyst			POCS	Pellets size	Catalyst loaded			POCS		Catalyst loaded		
code	Formulation	POCS Type	Volume (cm ³)		g	g/cm ³	POCS Type	Volume (cm ³)	Pellets size	g	g/cm ³	
JM (AN4750)	Ru-based	BCC Cell=3, Strut= 0. 4mm, L=1.5cm; Ø=1c m	1,177	50-70 mesh – 0,297-0,210mm	1,172	0,995	BCC Cell=3, Strut= 0.4mm, L=2 0cm; Ø=5,11cm	409,96	50-70 mesh - 0,297-0,210 mm	406	0,990	
JM (AN4750)	Ru-based	SINGLE MR – BCC Cell=3, Strut= 0.4mm, L=10cm; Ø=2.66cm w ith hole (1,08cm)	46,38	50-70 mesh – 0,297-0,210mm	46,10	0,994						

CONCLUSIONS

Given Support manufacturing activation and scale-up

• AM can manufacture complex parts allowing more freedom of design optimisation for catalytic reactors compared with traditional manufacturing techniques;

AndreaH

 $\bigcirc AMBHER$

- The combined dip/spin coating method can be used to obtain Structured catalysts with homogeneous and stable catalytic layers (thickness ≈ 17-41µm), no pore-clogging phenomena were observed irrespective of the geometry used;
- The presence of anchoring points, and the thermal pre-treatment of supports play a crucial role in achieving high mechanical stability;
- The structured catalytic systems obtained by combining AM with the whashcoating technique are characterized by higher porosity (88 -90%), higher SSA (50-115 cm²/cm³) and lower pressure drops with respect to the conventional packed bed reactor.
- The coating method can be easily scaled up without requiring adjustments compared to samples prepared on a smaller scale

Catalytic activity

- The BCC and Gyroid based catalysts have shown promising catalytic performances towards ammonia synthesis and decomposition;
- In particular, the GYROID structure, with its labyrinthine network of channels, provided efficient mass transfer pathways;
- The Gyroid structure enabled the design of lighter and more compact reactors, addressing weight and volume constraints in applications like distribute hydrogen production and ammonia synthesis.
- Overall, this comparative analysis highlights the importance of structural design in catalytic processes and underscores the potential of GYROID structures for advancing reactor efficiency and compactness.

Staff involved

Thanks!

Istituto di Tecnologie Avanzate per l'Energia "Nicola Giordano" (ITAE)

Dr. Antonio Vita

Gabriel Marino Research fellow Laboratory activities marino@itae.cnr.it

Antonio Vita

Senior Researcher

Head of FPMaT,

antonio.vita@itae.cnr.it Minju Thomas Postdoctoral Researcher. Laboratory activities thomas@itae.cnr.it

Cristina Italiano

Researcher

Catalyst design,

cristina.italiano@itae.cnr.it

Miriana Caporlingua Research fellow Laboratory activities miriana.caporlingua@itae.cnr.it Fuel Processing Materials and Technologies (FPMaT)

antonio.vita@itae.cnr.it antoniosalvatore.vita@cnr.it