

Hydrogen production via ammonia decomposition in membrane reactors

Dr. Valentina Cechetto

H,

Ammonia decomposition

Proof of concept

Experimental conditions			
ΔP [bar]	3		
Permeate pressure [bar]	0.01-1		
Feed flow rate $[L_N/min]$	0.5		
Membrane	Double-skinned Pd-Ag		
Thickness selective layer [µm]	~4.61		

Compared to conventional systems, in a membrane reactor:

- Comparable or higher NH₃ conversion can be achieved at lower temperature (higher efficiencies)
- \Box High-purity H_2 is recovered

Cechetto, V.; Di Felice, L.; Medrano, J.A.; Makhloufi, C.; Zuniga, J.; Gallucci, F. H₂ production via ammonia decomposition in a catalytic membrane reactor, *Fuel Processing Technology*, **2021**, Volume 216, 106772, https://doi.org/10.1016/j.fuproc.2021.106772.

Proof of concept

Experimental conditions			
ΔP [bar]	3		
Permeate pressure [bar]	0.01-1		
Feed flow rate $[L_N/min]$	0.5		
Membrane	Double-skinned Pd-Ag		
Thickness selective layer [µm]	~4.61		

Compared to conventional systems, in a membrane reactor:

- Higher NH₃ conversion can be achieved at similar pressures (higher compactness)
- □ Lower purities of H₂ recovered

Cechetto, V.; Di Felice, L.; Medrano, J.A.; Makhloufi, C.; Zuniga, J.; Gallucci, F. H₂ production via ammonia decomposition in a catalytic membrane reactor, *Fuel Processing Technology*, **2021**, Volume 216, 106772, https://doi.org/10.1016/j.fuproc.2021.106772.

The challenge of H₂ purity

PEMFC specifications requires residual NH₃ concentration in the H_2 feed < 0.1 ppm.

Strategy 1: increase of membrane selectivity by increasing the membrane thickness

Strategy 2: implementation of a cleanup unit downstream of the MR implementing thin membranes

membrane reactors, International Journal of Hydrogen Energy, 2022, Volume 47, https://doi.org/10.1016/j.ijhydene.2022.04.240.

Less selective membranes can be implemented

Carbon molecular sieve membranes for H₂ recovery from NH₃

Membrane preparation

Cechetto, V.; Anello, G.; Rahimalimamaghani, A.; Gallucci, F. Carbon Molecular Sieve Membrane Reactors for Ammonia Cracking. *Processes* **2024**, *12*, 1168. https://doi.org/10.3390/pr12061168

Carbon molecular sieve membranes for H_2 recovery from NH_3

Cechetto, V.; Anello, G.; Rahimalimamaghani, A.; Gallucci, F. Carbon Molecular Sieve Membrane Reactors for Ammonia Cracking. Processes 2024, 12, 1168. https://doi.org/10.3390/pr12061168

∆P [bar]

Membrane

NH₃ concentration in the permeate <0.75 ppm was achieved through the implementation of a sorption unit downstream of the reactor.

12%

10%

8%

6%

4%

2%

0%

.⊆

concentration

and NH_3

recovery

 H_2

the permeate [%]

Effect of membranes' separation properties on the performance of a MR for NH_3 decomposition

Membrane	Selective layer composition	Selective layer thickness [µm]	Membrane area [m ²]	Membrane configuration	Type of support	H ₂ permeance [mol/s/m ² /Pa]	N ₂ permeance [mol/s/m²/Pa]	H ₂ /N ₂ perm- selectivity [-]
M1	Pd-Ag	~ 4-5	5.9·10 ⁻³	Supported tubular DS	Ceramic	1.64•10 ⁻⁶	3.47·10 ⁻¹¹	47080
M2	Pd-Ag	~ 6-8	8.6·10 ⁻³	Supported tubular DS	Ceramic	1.15·10 ⁻⁶	1.66.10-11	68960
M3	Pd-Ag	~ 6-8	4.0.10-3	Supported tubular conventional	Metallic	6.57·10 ⁻⁷	1.12.10-10	5890
M4	CMSM	~ 3–5	2.5·10 ⁻³	Supported tubular conventional	Ceramic	1.01.10 ⁻⁷	3.85·10 ⁻⁹	26

DS = Double -skinned

Cechetto, V.; Agnolin, S.; Di Felice, L.; Pacheco Tanaka, A.; Llosa Tanco, M.; Gallucci, F. Metallic Supported Pd-Ag Membranes for Simultaneous Ammonia Decomposition and H₂ Separation in a Membrane Reactor: Experimental Proof of Concept. *Catalysts* **2023**, *13*, 920. https://doi.org/10.3390/catal13060920

Effect of membranes' separation properties on the performance of a MR for NH_3 decomposition

Membrane	Selective layer composition	Selective layer thickness [µm]	Membrane area [m²]	Membrane configuration	Type of support	H ₂ permeance [mol/s/m ² /Pa]	N ₂ permeance [mol/s/m ² /Pa]	H ₂ /N ₂ perm- selectivity [-]
M1	Pd-Ag	~ 4-5	5.9·10 ⁻³	Supported tubular DS	Ceramic	1.64•10 ⁻⁶	3.47.10-11	47080
M2	Pd-Ag	~ 6-8	8.6.10-3	Supported tubular DS	Ceramic	1.15·10 ⁻⁶	1.66.10-11	68960
M3	Pd-Ag	~ 6-8	4.0.10-3	Supported tubular conventional	Metallic	6.57 · 10 ⁻⁷	1.12.10-10	5890
M4	CMSM	~ 3–5	2.5·10 ⁻³	Supported tubular conventional	Ceramic	1.01.10 ⁻⁷	3.85·10 ⁻⁹	26

DS = Double -skinned

Cechetto, V.; Agnolin, S.; Di Felice, L.; Pacheco Tanaka, A.; Llosa Tanco, M.; Gallucci, F. Metallic Supported Pd-Ag Membranes for Simultaneous Ammonia Decomposition and H₂ Separation in a Membrane Reactor: Experimental Proof of Concept. *Catalysts* **2023**, *13*, 920. https://doi.org/10.3390/catal13060920

What about the economic feasibility of the process?

Is the membrane reactor-based system economically competitive compared to a conventional system?

Studies available in literature calculated the costs of hydrogen production, but a comparative study addressing a technoeconomic assessment at different plant capacities and system configurations is not available.

 This work:
 <u>Techno-economic assessment of a decentralized plant for</u> <u>hydrogen production from ammonia decomposition</u>
 → H₂ for direct use in PEM fuel cells
 → Applications: stationary applications (a), on-board vehicle applications (b), and refuelling stations (c)

Methods

Design of conventional system for green NH₃-derived hydrogen production

- > H₂ production: 500 kg/day
- \succ Final H₂ application:
- 1) Stationary applications (SA)
- 2) On-board vehicle applications (O-VA)
- 3) Refueling stations for vehicle applications (R-VA)

Optimization of the conventional system design

Evaluation of operating conditions allowing for minimization of cost of hydrogen (COH)

- Evaluated reactor operating conditions:
 - T=450-550°C and P=1-20 bar

Design of the MR-based system

 Reactor operating conditions: T_{MR}=T_{CR}-50°C and P_{MR}=P_{CR} Optimization of the MR-based system design

 Investigation of process parameters that optimize the COH

Methods: economic assessment

 $COH = \frac{(TOC \cdot CCF) + C_{O\&M,fixed} + C_{O\&M,variable}}{Capacity \cdot Plant availability}$

Plant Component	Cost [k€]
Component W	А
Component X	В
Component Y	С
Component Z	D
Bare Erected Cost [BEC]	A+B+C+D
Direct costs as percentage	of BEC
Total Installation Costs [TIC]	80% BEC
Total Direct Plant Cost [TDPC]	BEC+TIC
Indirect Costs [IC]	14% TDPC
Engineering procurement and construction [EPC]	TDPC+IC
Contingencies and owner's	costs
Contingency	10% EPC
Owner's cost	5% EPC
Total contingencies & OC [C&OC]	15% EPC
Total Overnight Cost [TOC]	EPC+C&OC

$$C_{i} = C_{0} \cdot \left(\frac{S_{i}}{S_{0}}\right)^{n} \cdot F_{p} \cdot F_{m} \cdot F_{T} \cdot \frac{CEPCI}{CEPCI_{reference year}}$$

Cost O&M fixed	
Maintenance	2.5% TOC
Insurance	2% TOC
Labor	27991 €/year/pp ¹

COST O&M variable	
Green NH ₃	853.92 €/ton ²
Electricity	0.085 €/kWh ³
Catalyst	143 €/kg ³
Zeolite 13X	43.7 €/kg ⁴
Membrane	6000 €/m ³

Assumptions	
Plant availability	90%
Plant lifetime (n)	25 years ³
Catalyst lifetime	5 years ³
Lifetime Zeolite 13X	5 years
Membrane lifetime	5 years
Discount factor (i)	8% ³

$$CCF = \frac{(i+1)^n}{((i+1)^n - 1)}$$

¹<u>https://www.payscale.com/research/NL/Job=Chemical Process Operator/Salary</u>

² https://www.iea.org/reports/global-hydrogen-review-2021/executive-summary

³ S. Richard, A. Ramirez Santos, and F. Gallucci, "PEM genset using membrane reactors technologies An economic comparison among different e-fuels", International Journal of Hydrogen Energy

H₂ production from NH₃: the conventional and the MR-based systems

Design of the conventional process for SA

Design of the conventional process for VA

Optimization of the conventional system

COH in the conventional system is minimized with the reactor operated at T=450 °C and 5 bar
 The process is OPEX-intensive with the cost of the NH₃ feedstock being the main contributor to COH

Design of the MR-assisted process for SA/VA

Optimization of MR-based system

The cost of NH₃ feedstock is the main contributor to COH **Objective** Minimization of the NH₃ feedstock

Reactor optimization ≠ Process optimization

A higher recovery reduces the available heat from the combustion of the retentate, which leads to an increased quantity of fuel that must be burned to sustain the NH_3 decomposition reaction and that, in turn, implies a greater flow rate of NH_3 to be processed.

Economic assessment

Is the packed bed MR technology competitive compared to the packed bed conventional technology?

Scenario 1: stationary applications

Both in the conventional and in the MR-based systems the COH is 6.95 €/kg

No economic advantage from utilization of the packed bed MR technology

Similar conclusions to scenario 2.1 with COH_{conventional}=7.57 €/kg and COH_{MR-assisted}=7.38 €/kg

Economic assessment

Sensitivity analysis

The process is OPEX-intensive and green NH_3 is the main cost driver

Forecasting

Year	Cost of NH ₃ [€/ton]	COH [€/kg]
2020	853.92	6.95
2030	377.07	3.60
2050	277.30	2.90

https://www.iea.org/reports/global-hydrogenreview-2021/executive-summary

Conclusions

In a membrane reactor for H₂ production from NH₃:

- Higher efficiency and compactness compared to a conventional system are achieved
- Optimization is possible by tuning the membrane separation performance, the membrane area and the operating conditions
- □ Fuel cell-grade H_2 production is possible with the addition of a relatively inexpensive sorption unit downstream of the reactor.
- Carbon membranes can be regarded a competitive alternative to Pdbased membranes

From an economic point of view, the recovery of H_2 from green NH_3 using MRs can be achieved at lower costs compared to the benchmark technology.

eystem Retentate: N₂ atively Pd-O

Permeate: H₂

The MR technology holds significant potential in advancing the decarbonization of the current energy system.

Thank you for your attention

Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union. Neither the European Union nor the granting authority can be held responsible for them.

