

Transition metal nanoparticle-based catalysts for ammonia synthesis

María Dolores Seva¹, Elena Vicente¹, Simona Somacescu², David Catalán Martinez¹, Jesús Ara¹, Álvaro Represa¹, José Manuel Serra¹, María Balaguer¹, Sonia Escolástico¹.

¹Energías Renovables/Instituto de Tecnología Química/CSIC/Universitat Politècnica de València, Valencia, España ²Department of Catalysis and surface Chemistry/Institute of Physical Chemistry/Bucharest, Romania

Introduction

- \rightarrow Haber-Bosch process contributing 1-2% to global \Box Industrial production of NH_3 anthropogenic CO_2 emissions¹.
- \Box The HB process involves \rightarrow use of Fe-based catalysts and extreme operating conditions of P and T \rightarrow cost-effective NH₃ synthesis catalysts are still lacking at moderate conditions.
- \Box Ru-based catalysts \rightarrow production rates of NH₃ have not yet compensated for the high costs of this metal. In addition, they often suffer from H_2 poisoning.

Objectives

- □ Reduction of environmental impact
- Minimize CO₂ emissions related to ammonia production
- □ Optimization of energy efficiency:
- Develop catalysts that require lower energy consumption by reducing the need for high pressures and temperatures in the NH₃ synthesis process. Reach high NH_3 productions at T< 250°C and P < 20 bar

 \Box Addition of electron donors² \rightarrow allows e^{-} transfer to the Π^{*} orbitals of N_{2} .

(1) Annual Review of Chemical and Biomolecular Engineering 2020, 11, 503-521 (2) ChemCatChem 2020, 12, 5838–5857

- □ Study of stability and durability:
- Evaluate the long-term stability and resistance to H₂ poisoning of transition

metal nanoparticle-based catalysts.

Pretreatment of 60 ml/min H2 at 550°C 1h

Sample	BET area (m ² /g)	
A-ITQ-009	108	
A-ITQ-010	91	
N₂ adsorption Type IV isotherm with a hysteresis loop H1 suggesting a <u>mesoporous structure</u>		

Sample	Catalyst	Synthesis method	Tcalcination (°C)
A-ITQ-009	Ru-doped ceria	Hydrothermal	550
A-ITQ-010	Ru-Ni-doped ceria		

Conclusions

□ A-ITQ-009 shows higher catalytic activity that may be linked to an appropriate metal loading and a homogeneous distribution of Ru particles compared to A-ITQ-010.

- \Box The catalytic results show high N₂ conversion and no deactivation after over 180 minutes of, indicating good stability of the catalyst under the studied conditions.
- \Box In conclusion, promising Ru-based catalysts were developed for the NH₃ synthesis reaction at moderate conditions.
- □ However, there is still a need for further research and improvement of these catalysts to make them competitive with those currently used in the HB process.

Acknowledgements

This work is part of the EU Project, Ammonia and MOFbased Hydrogen Storage for Europe (AMBHER). The AMBHER Project has received funding from the European Union's Horizon 2021-2027 resilience programme under grant agreement No 101058565. The views and opinions expressed are solely those of the authors and do not necessarily reflect those of the European Union or the European Executive Agency in the fields of Health and Digital. Neither the European Union nor the funding authority can be held responsible for them. Thanks also to the PLASMMONIA Project, which has received funding from the Generalitat Valenciana-SEJIGENT 2022 through the grant (CISEJI/2022/31) and to the Ministry of Universities for the pre-doctoral

